Digital

Digital

Positive results: powering older age health apps



Categories:

The WHO predicts that by 2050, the worldwide population over 60 will have doubled to reach two billion people. With most age-related illnesses beginning at the age of 50, it’s clear that this will have an impact on the world’s medical services. Here, Neil Oliver, technical marketing manager of global battery manufacturer Accutronics, looks at the importance of designing in the correct source of power for older wearable users

While he may have co-founded Intel, Gordon Moore’s greatest contribution to the world – and particularly the electronics industry – is Moore’s law; the 1965 observation and prediction that the number of transistors on an integrated circuit increases by a factor of two every two years. It may have been a prediction when Moore published his paper in 1965, but it’s since become more of a benchmark for the electronics industry. This has never been more apparent than it has since the turn of the century, where we’ve seen technology from personal computers and mobile phones to cardiac monitoring equipment shrink in size but increase in functionality and power.

It is these developments in electronics that have led to the rapid rise of wearable devices, particularly in critical sectors such as healthcare and medical technology. The jump in popularity can be attributed for the most part to a broader adoption of the Internet of Things. The growth in wearable devices and the ageing population may seem like two disconnected trends, but what if they were connected? Wearable technology is set to be worth $34 billion by 2020, according to research by CCS Insight, so there is clearly investment in the market.

When you think of medical wearable devices, you may think of step-tracking devices, geared towards the young and active, but you may not think of smoking cessation patches or a device to monitor the breathing of sleep apnoea sufferers. In fact, a study by the Journal of the American Medical Association showed that few senior citizens were using digital health technology, despite high ownership of mobile phones and computers. Therefore, there seems to be a gap in the market for original equipment manufacturers (OEMs) to create wearable devices to track long term health conditions. However, they must consider what is powering these devices, so that they can function correctly.

Powerful considerations

As an experienced battery manufacturer, we often find that for many devices, medical included, OEMs come to us for advice far too late in the design process. They will have a space for us to fill, but there is not always adequate room to fit a battery that delivers the required energy density and runtime. Especially in wearable devices, where space is at a premium, OEMs must consider what is powering their device early on in the process.

Before creating a wearable medical device, OEMs must conduct detailed research in order to determine the usage profile for the battery. They must choose between rechargeable and non-rechargeable batteries, and removable and non-removable batteries, depending on what the best option is for the end user. For example, an elderly patient with little awareness of technology may be best equipped with a non-rechargeable device with a removable battery. This means that the medical practitioner can be responsible for replacing the battery for the wearable device, rather than them having problems with charging the device.

Neil Oliver

Similarly, if a removable battery is used, patients may be given the opportunity to purchase their own batteries, which may not be the best option for a medical device. For example, consumers are often tempted to purchase the cheapest version of AA batteries, which will not last as long as a higher quality battery. While this may be acceptable for a child’s toy, it is not reliable enough for a medical device. Security concerns are also a problem with a removable battery. With the prevalence of counterfeit batteries on the market, that the end user may easily purchase online, OEMs should incorporate algorithmic security to protect the end user of the medical device.

How medical device CEOs can navigate digital health disruption

In the first of a series of three articles, we get global leaders, McKinsey & Company's insight on the medtech market right now. They give their expert advice to medical device companies, explaining how they can navigate through digital disruption.

READ ARTICLE

New features to save the day

Accutronics offers a function to protect the end users of the medical device. When a new battery is inserted into the device, if it fails to solve the same calculation as the device, the device will flag it as an inauthentic battery, indicating the danger to the user. It will then either display a pop-up message or shut down the device, depending on the preference of the OEM.

If the OEM decides that a rechargeable battery is the best option for the device and the end user, they must consider how long they expect the battery to last. Previous wearable medical devices have failed because OEMs fail to undertake adequate market research and the consumer uses the product differently than was intended. For example, the device may use more power than expected when not actively being used.

Rechargeable devices used for medical purposes must also have accurate fuel gauging. If the battery is inaccurate, suddenly drops or jumps between charge levels, this is unacceptable for a device that is used to monitor vitals. Accutronics’ CMX series batteries use an impedance tracking algorithm to predict remaining capacity, which is displayed in increments on a visual state of charge indicator.

Wearable medical devices have the potential to revolutionise healthcare, especially in the context of the ageing population. Not only will doctors be able to monitor daily changes in a person’s health and can alert them when vitals reach dangerous levels, a well-designed device will also allow the elderly to become advocates for their own healthcare, monitoring changes themselves.

However, to do this, the batteries that power the devices must be well suited to the device itself, the end user and their needs. Rather than considering the battery as an afterthought in the process, OEMs should remember that by including a battery manufacturer early on in design the process, they will be able to optimise the design to make it as lightweight, portable and well adapted to the end user as possible.

About the author

With well over 100 years experience between us, we've been around the editorial and medical blocks a few times. But we're still as keen as any young pup to root out what's new and inspiring.

Related articles

Contribute

You're the expert! Write for The Engine or share your articles, papers and research

Add your content

Add your content

Keep informed

Sign up for Ignition, our regular, ideas-packed newsletter

Sign in with social media

or with a username